Child pages
  • Schedule
Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 39 Next »

IST 557 Data Mining: Techniques and Applications

 

  • all homework/reports are due at midnight (11:59pm)
  • schedule is subject to change
  • black: lectures; blue: in-class discussions; orange: student presentation

 

 

Week

Date

Lecture (tentative schedule)SlidesDeadline

1

8/27

Course overview

Intro to data mining

0-class-intro.pdf

quiz

quiz due 11:59pm 8/28 Wednesday

 

8/29

Intro to classification

 

1-classification-intro.pdf

8/31 regular drop deadline

9/1 add deadline

2

9/3

Classification 1 - decision tree2-decision-tree.pdf 

 

9/5

Classification 1 - bagging & boosting

3-bagging.pdf

4-boosting.pdf

Assign 1 

3

9/10

Assign 1 Q&A (TA in class) Assign 1 due 11:59pm 9/10 Tuesday

 

9/12

Classification 2 - perceptron, SVM

5-perception.pdf

6-svm.pdf

 

4

9/17

Classification 2 - Kernel7-kernel.pdfAssign 2

 

9/19

Classification 3 - bayesian statistics

8-bayesian.pdf

 

5

9/24

Assign 2 Q&A (TA in class)

 Assign 2 due 11:59pm 9/24 Tuesday

 

9/26

Classification 4 - generative models

logistic regression

9-generative-model.pdf

9-naive-bayes-example.pdf

10-logistic.pdf

 

6

10/1

Classification 5 - KNN11-knn.pdf 

 

10/3

Classification 6 - neural nets

12-neural-nets.pdfAssign 3

7

10/8

Clustering 113-kmeans.pdfSuggest your preferred Kaggle competition and preferred team members to TA (hzw77@psu.edu) by 10/8

 

10/10

Assign 3 Q&A (TA in class)

 Assign 3 due 11:59pm 10/10 Thursday

8

10/15

Clustering 2

 Project starts

 

10/17

advanced topic - GANs

  

9

10/22

advanced topic - reinforcement learning

 

 

 

10/24

Project Q&A (TA in class)

 10/27 project check 1 (starting point)

10

10/29

project presentation 1 (starting point)  

 

10/31

Project Q&A

 

 

11

11/5

invited lecture from industry (Facebook)  

 

11/7

invited lecture from industry (Twitter)  

12

11/12

advanced topic - representation learning  

 

11/14

advanced topic

 

11/15 late drop deadline

11/17 project check 2 (midterm)

13

11/19

project presentation 2 (midterm)

  

 

11/21

Project Q&A

  
1411/24-30Thanksgiving week  

15

12/3

Project lab  

 

12/5

Project lab 12/8 project check 3 final

16

12/10

project check point 3 (final)  

 

12/12

Report writing final report due

 

 

 

 

 

 


 


  • No labels